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Although there exists a large number of analytical and numerical studies of wave pro- 
cesses in liquids with bubbles (for reviews of the basic results and bibliographies, see [i, 
2]), relatively little attention has been devoted to wave propagation in polydispersed sys- 
tems. Propagation of acoustic perturbations in a medium with polydispersed bubbles was con- 
sidered in [3, 4]. Some numerical and analytical results for the structure of shock waves 
in polydispersed liquid mixtures with a finite number of bubble fractions were given in [5, 
6]. 

In the present paper we consider propagation of long waves of finite amplitude in 
liquids with a continuous spectrum of gas bubble sizes using the model of a monodispersed 
medium. It is shown that in general this description is not correct. However, if the sur- 
face tension only slightly affects the pressure inside a bubble and the process is nearly 
isothermal or adiabatic, then in the long-wavelength limit one can introduce effective bub- 
ble radii characterizing the average periods of vibration of the bubbles, heat transfer, 
and the surface tension on the bubble-liquid interface. Evolution equations are derived 
for waves of moderate amplitude (weak perturbations of Riemann waves) in the plane, one-dimen- 
sional case. These evolutions generalize the Burgers - Korteweg - de Vries (BKdV) equations 
to larger amplitudes (the BKdV equations for slightly nonlinear waves have been obtained in 
[i, 2, 7, and 8]). 

I. Basic Equations. The unperturbed homogeneous state of an incompressible liquid 
with bubbles of insoluble gas is denoted with a zero subscript. We assume that in each 
elementary volume of the medium spherical bubbles are distributed with the density N0(a 0) 
in the bubble radius a0 over the interval A ~ [a_,a~] (a0~A) and dn0(a 0) = N0(a0)&a 0 is the 
number of bubbles with radii between a 0 and a 0 + da 0 per unit volume of the mixture. Each 
quasi-monodispersed bubble fraction in the mixture with radii between a 0 and a 0 + da 0 is 
given a Lagrangian index ~ which is treated as a continuous variable. We next assume that 
the fraction ~ is an independent monodispersed phase in a multiphase continuum [9]. In the 
perturbed state the parameters of the liquid and of the mixture as a whole do not depend on 
~, but the parameters describing the bubbles will be functions of ~ (they will be given the 
subscript ~, where necessary below). For example, d n ~ ( x , t )  = N ~ ( x , t ) d ~ ,  a~ (x , t ) , p~ (x , t ) ,  m ~ ( x , t ) =  
4 ~ o  

~a#~,p~(x ,  t) are the number of bubbles of fraction ~ per unit volume of the mixture, their 

radius, density, mass, and gas pressure inside the bubble (x is the position vector of the 
elementary volume and t is the time). The parameters of the liquid are given the subscript 
1 and the integrated parameters of the bubbles (independent of g) are given the subscript 2. 
Then the equations of motion of a dilute (~2 ~ i) polydispersed continuum in the one-velocity 
approximation can be written in the form [i, 3, 9] 

dtm ~ = O, dtp 1 -~ p lV  v - -  0 (dt9 -~- p V v  = 0) ,  

d t N  ~ + N~ V v = O, g d t v  + VP = O (d t : 0 t + v V , O  t -~ O/Ot), 

3 . ,  4V 1 -I 20 
p o ~d~=~ + ~ (d,~t)~ + ~ ~,~| J + ~ = p~ - p, 

% = T ~a~N~ d~, 92 = m~N~ d~,  cq = t - -  %,  9 ,  ---- P ~  9 = Pl + P2, 
A A 

0 ~ = p2/~. 

(1.1) 

Tyumen'. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, No. i, pp. 
88-95, January-February, 1992. Original article submitted February 26, 1991. 
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Here p and p0 are the average density and intrinsic density; v is the velocity of the mix- 
ture; ~ is the volume content; v and o are the kinematic viscosity and the surface tension; 
the quantities without subscripts (9, v, p) refer to the mixture as a whole. 

In the one-velocity approximation we have 

PJPa0 = 9/P0 =N~/N~0 (N~= (9/90)N~0), (1.2) 

and hence the size distribution of the bubbles can be expressed in terms of the initial size 
distribution. 

The system (i.i) is not closed, since it does not contain a relation between PS and a~. 
This relation can be found from the solution of the heat transfer problem between a single 
bubble of ideal gas and the surrounding liquid. The solution in the homobaric formulation 
[pg = pg(t)], in a coordinate system fixed to the center of the spherical bubble, has the 

form [i] (pg = PS' a = a S ) 

pg(t)  = R29g(r , t )  T g ( r , t ) ,  w g ( r , t )  = ?2y~p__._~%2Orrg____Otpg,-- l 3?2Pgr 

pgc2(O~Tg ~- WgOrTg) = ~2r-2#r(r20rTg) ~- OtPg' ( 1 . 3 )  

aOtpg + 3?2pg@ta -~- 3(y 2 - -  l)qg = 0, qg = --~2(OrTg)r=~, 

Tg]~=~ = To = const, O~Tgl~=o = 0 (0 t = 0/0t, 0~ = 0/0r), 

where the g subscript denotes gas; r is the radial coordinates; T, w, and q are the tempera- 
ture, radial velocity, and heat flux on the boundary of the bubble; the quantities R2, 72, 
c2, ~2 are the gas constant, adiabatic index, heat capacity at cosntant pressure, and thermal 
conductivity of the gas, and are assumed to be constants. 

We consider wave propagation with the characteristic period t, = L,/C,, where L, and 
C, are the characteristic wavelength l and propagation velocity. We introduce the dimension- 
less variables 

' P--Lg P '  P ,  " P--g O' P "' Tg , v 

, Wgt. , qga (t) ( 1 . 4 )  
x ' - -  ~ t '  t a' a ~ ~ a-~'  Wg ~ -  qg = ~2T0 L,' =tC' = ~ '  % '  ' 

o' = ~ Pgo = Po + ~ o  R2PgoTo, a o ~ ,  a~ = a ,  p~ = p . 
aoP ~ 

E q u a t i o n s  ( 1 . 1 )  and ( 1 . 3 )  show t h a t  t h e  b e h a v i o r  o f  t h e  b u b b l e  i s  d e t e r m i n e d  by t h r e e  
d i f f e r e n t  t ime  c o n s t a n t s  

T i = a  o \po /  T ~ =  a~ x~ = - -  ~ 2 = - -  ~1 , ' ~2' Po Ogo%' ( 1 . 5  ) 
~j = ~j l t , ,  ] = ~, i, ~ (5~ = 6i (~), 5~ = ~ (~), a0 ~- ~), 

c h a r a c t e r i z i n g  t h e  i n e r t i a l ,  t h e r m a l ,  and v i s c o u s  e f f e c t s  in  t h e  i n t e r a c t i o n  o f  t h e  bubb le  
w i t h  t h e  l i q u i d .  The d i m e n s i o n l e s s  p a r a m e t e r s  6j a r e  t h e  r a t i o s  o f  t h e s e  t ime  c o n s t a n t s  t o  
t h e  c h a r a c t e r i s t i c  e x t e r n a l  t i m e  t , .  I n  t h e  l o n g - w a v e l e n g t h  a p p r o x i m a t i o n  6 i ~ 1, 6~ ~ 1 
( s e e  a l s o  [ 1 0 ] )  and we c o n s i d e r  t h e  two c a s e s  6 k ~ 1 and 6 k ~ 1 ( t h e  gas  i n s i d e  t h e  b u b b l e  
i s  n e a r l y  i s o t h e r m a l  o r  a d i a b a t i c ,  r e s p e c t i v e l y ) .  

We i n t r o d u c e  t h e  l i n e a r  a v e r a g i n g  o p e r a t o r  

(if g does not depend on S then <g> = g) and the average radii [9] 

a m . n = [ ( ! N ~ o ~ d ~ ) / ( ! N ~ o ~ n d ~ ) ] l / ( ~ - n ) ,  m ~ n .  (1.7) 

Below we w i l l  m a i n l y  u se  t h e  d i m e n s i o n l e s s  q u a n t i t i e s  ( 1 . 4 )  and ( 1 . 5 )  and t o  s i m p l i f y  t h e  no-  
t a t i o n  we omi t  t h e  p r i m e s  on t h e s e  q u a n t i t i e s .  

2. Z e r o t h  ( E q u i l i b r i u m )  A p p r o x i m a t i q n .  P u t t i n g  6 i = 0, 6~ = 0 and 6 k = 0 (Tg = 1, 

pg = pg) o r  6~ = ~ (pg = p ~ ) ,  we have  
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2[a(~)]-1~(~) = [a(~)]-3x(t + 2o(~))- -  p (a = ]~(~, p)) .  ( 2 , 1 )  

H e r e  a n d  b e l o w  • i s  t h e  p o l y t r o p e  i n d e x  a n d  i s  e q u a l  t o  1 i n  t h e  i s o t h e r m a l  c a s e  a n d  ~2 i n  
t h e  a d i a b a t i c  c a s e ;  f o  i s  t h e  u n i q u e  p o s i t i v e  r o o t  o f  ( 2 . 1 ) .  U s i n g  ( 1 . 1 ) ,  ( 1 . 2 ) ,  a n d  ( 1 . 6 ) ,  
we o b t a i n  t h e  e q u a t i o n  o f  s t a t e  f o r  t h e  p o l y d i s p e r s e d  medium 

p = [alo + a2 ~ (]~ (~, p ) > ] - l ,  ( 2 . 2 )  

which is in general different from the equation of state for monodispersed bubble:; in a 
liquid [i], since bubbles of different sizes deform differently. If the bubble radius or 
the pressure of the liquid is so large that surface tension can be neglected, then the size 
distribution of the bubbles does not affect the equation of state (lim]~_--]~_--p-i/~ and 

- J \ ( ~ - - ,  o 

p = [~0p / ( l  - ~,0p) ]~. ( 2 . 3 )  

We consider the first correction to this equation due to surface tension. Expanding 
(2.1) in a series in o and keeping only the linear term, find 

p =  (_ ~_200 ~Z {~ + 2(~3,2 [ ~ -  (__ CZ20~O ~--X+1/3 ], 
-  1opJ JJ' ( 2 . 4 )  

where o3, 2 = o/(P0a3, 2) [o is the surface tension and a3, 2 is given by (1.7)]. Hence we 
have shown that in the equilibrium approximation to first order in the surface tension the 
propagation of long waves in a polydispersed mixture will be the same as in a monodispersed 
mixture with the effective bubble radius a s,2 [the case of a monodispersed medium is obtained 
by putting N$0 = n0~(~ - a,), 6($) is the Dirac delta function and a, is the unperturbed 
bubble radius. Then am, n = a, for any m and n in (1.7)]. Below the surface tension will be 
neglected for simplicity. 

It follows from (2.4) that for small ~20 perturbation of the pressure p by a small 
quantity ~E leads to perturbation in the density p by a quantity ~g~20- The conservation 
equations of mass and momentum (i.i) show that the velocity v is perturbed by a quantity 
~sa20. Converting to dimensionless quantities and neglecting terms O(~20), we obtain from 
( 1 . i ) ,  ( 1 . 4 ) ,  and (2.4) 

Otr + V u = 0, Otu + VP = 0, p = n(r) ---- (1 - -  r) -~ ( 2 . 5 )  

( r  - -  ~01  (p - 1), ~ = ~ 0 1 v ,  c ,  = [po/(~oOo)]~/~) 
The s y s t e m  o f  e q u a t i o n s  ( 2 . 5 )  d e s c r i b e s  t h e  m o t i o n  o f  a b a r o t r o p i c  g a s  a n d  i n  t h e  p l a n e  

one-dimensional case has a simple Riemann wave solution. For waves traveling to the right 

O~r + c(r)O~r = O, c(r) = [z ' ( r ) ] l /~  = [• - -  r)-•  = U'(r),  ( 2 . 6 )  

u = U(r), U[~.= 1 = - - l n  (1 -- r), UIx#l = 2xl/2(• -- 1)-1(1 -- r) -(• 

H e r e  a p r i m e  d e n o t e s  d i f f e r e n t i a t i o n  w i t h  r e s p e c t  t o  t h e  a r g u m e n t ;  c ( r )  i s  t h e  c o n s t a n t  d e n -  
s i t y  propagation velocity, which can be shown to obey the equation 

Otc + cO~c ---- 0. ( 2 . 7 )  

When • = 1 t h e  p r e s s u r e  o f  t h e  m i x t u r e  p = v ( r )  = c ( r )  s a t i s f i e s  ( 2 . 7 ) .  

3. Intarphase Heat Transfer. In terms of the variables (1.4) [O r -----a-lOn, Ot -= @t- 
a-1(Ota)NOn ] the heat problem (1.3) reduces to 

a 2 (pgatTg -- ~21 (~2 -- t) TgOf.pg) = ~;1 [Tgq-2arl (q2anTg), _ (anTg + nqg) a,lTg], 
(3.1) 

3?.pga Ota -[- a 20tpg -[- 3726~1qg = O, qg = - -  OnTg In=l, Tg [~=1 = 1. 

We consider thick (6 x << I) and thin (d x >> i) thermal boundary layers in the bubble. 

A. dk << i. We expand Tg and qg in asymptotic series in the small parameter 5X: 

Yg : T~0 + 5~Yg 1 ~- . . . .  qg : qg0 @ 5~q~ + .. . .  q ~  = --0nTg~ln=~, ] = 0, t ... ( 3 . 2 )  

Substituting (3.2) into (3.1), we obtain Tg 0 -= I, qg0 - 0 and 

~l-~an Ofanrg~) = - -  (1 - -  ~ ,~)  a2Otpe, ~l-~On (~I~O~T~) ---- ( 3 . 3 )  

= - -  Tglq-20n (TI2OnVgl) -t- (OnTgl + 1leg1)OnTgl + a 2 (pgOtTe~i-) 
I 

- -  (1 - -  7 ;  1) TglOtp~), Tei In=~ = 0, / ----- 1, 2 . . . .  
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Solving (3.3) simultaneously, we find 

--1 / 0, 2 I (1 - -  w ) , t  - ~ )  a,p~,  qgl = ~ ( l  - -  v ;  ~) a ~" a,pg, T gl "~ 

f 
qg2 = -- ~ a~pg Otqgl. 

S u b s t i t u t i n g  t h e  e x p r e s s i o n s  f o r  q$1 and qg2 i n t o  ( 3 . 2 )  and i n t o  t h e  e n e r g y  i n t e g r a l  ( 3 . 1 ) ,  
and integrating with respect to t in  the llnear approximation in 6~, we have 

p,, = a - '  [ I - -  ~-' ( I  - -  ,Z~-I) 6,~-~ O,a] = a-~ U - -  6~.F (,~, t)l. ( 3 . 4 )  

This is the required relation between p~ and a, in the case when the behavior of the bubble 
is nearly isothermal. We note that (3.~) can be obtained using a different method by intro- 
ducing the Nusselt number for the interior problem Nug = i0 [I]. However in [I] the value 
Nug = 10 was found from the solution of the linear problem of small harmonic vibrations of 
the bubble with a frequency approaching zero. 

B. 6~ >> i. In most of the bubbles the temperature follows the adiabatic law Tg = 
p~-I/Y2 and its spatial variation is confined to a narrow layer of thickness ~6Xl/z near 

the boundary. Introducing the variable ~ = ~/2(i - q) and letting X = Pg1+l/~iTg, in the 
zeroth approximation we obtain from (3.1) 

2 1/~2 2 --1+1/7 2 a p e  Ot%=XO~'z+(q--O~%)O~,  %]~=0=Pg , %[~=~-----J, 
-112 -1+1/~ ( 3 . 5 )  

q = O ~ x k = 0 = 6 ~  pg 2qg, 

pglOtpg + 3?2a-IOta = - -  3y25-~1/~ 

It is evident that the quantity q is of order unity and depends on a, pg, and t. Hence 
2 1/~2 a-I -3v=(i + O(~1/~)) [it then follows that a pg + we find from the energy integral pg----a = 

-i+1/v~ _ a3(V~-l) O(6~ l/z) and these relations can be used in the coefficient in O (6~ 1/2) and pg -- + 

front of ~tX and in the boundary condition for ~ = 0 in (3.5)] and 

t 

pg = a -~v2 ( t  - -  6;a/2F (a, t)), F = 372 S a (t) q (a (t), t) dt. ( 3 . 6 )  
o 

It is a very complicated problem to obtain an explicit expression for F. If the tempera- 
ture inside the bubble does not vary very sharply [the quantity pg-1+I/Y2 is close to unity, 
which occurs for relatively small amplitudes or when the adiabatic index Y2 is close to unity 
(a "heavy" gas)] we can put t + 8 and linearize (3.5) in X and then we obtain a linear heat 
conduction equation in the coordinates (@, ~) and we can calculate F as 

t t 

F------]/----~] , 0 ( t ) =  a(t)dt .  ( 3 . 7 )  
0 

I f  in  a d d i t i o n  t h e  a m p l i t u d e  o f  t h e  p e r t u r b a t i o n  i n  a i s  s m a l l  ( l a  - 11 << 1) t h e n  
t 

9v.~ (v~ - ~) f [~ (~) - ~l d~ ( 3 . 8 )  
r---- ~- o (7--~) 77i 

0 

In  a d d i t i o n  t o  t h e  me thods  d e s c r i b e d  ab o v e ,  t h e r e  a r e  o t h e r  ways o f  a p p r o x i m a t e l y  t a k i n g  
i n t o  a c c o u n t  i n t e r p h a s e  h e a t  t r a n s f e r  in  a medium w i t h  b u b b l e s .  An example  i s  t h e  u s e  o f  an 
e f f e c t i v e  v i s c o s i t y  [ 1 ] .  T h i s  method  u s e s  t h e  s o l u t i o n  o f  t h e  l i n e a r  h e a t  t r a n s f e r  p rob l em 
f o r  a b u b b l e  and f rom t h e  damping d e c r e m e n t  o f  t h e  no rma l  v i b r a t i o n s  o f  t h e  b u b b l e  one  a r t i -  
f i c i a l l y  introduces an effective viscosity in the Rayleigh-Lamb equation [I] 

3 (?~ -- I) a l / 2 ~  (3xp o "~1/4 ( 3 . 9  ) 

Using ~eff as an effective viscosity, ~p in (1.5) will depend on ~ (a 0 = ~) [the quantities 
in (2.9) are dimensional]. 

4. First Approximation. Using (3.4) and (3.6), the dimensionless Rayleigh-Lamb equa- 
tion is written in the form 
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~ +(+++>+)+ + + 4,5~a+:+-dta+ 5Ta~s• t)]}. ( 4.1 ) 

Here 6 T = 6~ I/2 when 61 >> 1 and 6 T = 61 when 6 t << 1 and F(a~ ,  t) corresponds to F from (3.6) 
in the first case and to F from (3.4) in the second. 

We see from (4.1) that ~%=A[i +O(6~,6~,~T)], A=p -~/(~• Putting 62 ~ 6~ ~ 6 T ~ 6 and 
substituting this expression for as in the terms ~6 in (4.1), we find, neglecting terms ~6 ~ 

We next apply the operator < > (i.6) to both sides of (4.2). According to (i.i) and (1.2) 
we have ~/(~0P) on the left-hand side, while the right-hand side keeps the same form, in 
view of the linearity of the averaging operator and the fact that p and A are independent of 
~. The only change is that the average values <6~>, 
corresponding values of 6. These average values can 
defined by (1.7). Indeed, from (1.5), (3.4), (3.6), 

~ = ~/t,, 

~) <+.> = ~ -- ~, 

2) <~> = +~ -- ~., 

3 )  +:r = 0, <~> = 

<6U> , and <6T> appear in place of the 
be expressed in terms of average radii 
and (3.9) we find 

* 2 * 

* 2 
<TT> = %~, Tl --- a5,3/M2, 

t3/2 / T$'%--1/2 * 2 X <TT> , \ X] , +2'+-= a~,2/  2, 

I;~ = Veffpl/Po,  Vef f ~--- V 1 --}- 4 1//~---T ~-~,37 ~2 k pl  } - 7  , 

(4.3) 

where the cases i, 2, 3 correspond to heat transfer with thick 5~ ~ i, • = i) and thin (6~ 

i, ~ = u thermal boundary layers and to heat transfer with an effective viscosity. 

Therefore to terms 0(62 ) (4.2) can be rewritten in the form of an equation of state 

A = [(l - -  =10P)/(a20P)]l/~ ~ (1 - -  O 1/3, 

wh ich  t o g e t h e r  w i t h  t h e  c o n s e r v a t i o n  o f  mass and momentum e q u a t i o n s  f o r  t h e  m i x t u r e  [ f o r  
example ,  t h e  f i r s t  two e q u a t i o n s  o f  ( 2 . 5 )  w i t h  d t x 3 t ]  forms a c l o s e d  s y s t e m  o f  e q u a t i o n s .  
I n  o t h e r  words ,  i f  t h e  e f f e c t  o f  s u r f a c e  t e n s i o n  i s  n e g l i g i b l y  s m a l l ,  t h e n  in  t h e  f i r s t  ap -  
p r o x i m a t i o n  in  t h e  s m a l l  p a r a m e t e r  6 we have  1) when 6 A ( i p r o p a g a t i o n  o f  l ong  waves in  a 
p o l y d i s p e r s e d  m i x t u r e  i s  a n a l o g o u s  t o  p r o p a g a t i o n  o f  waves in  a m o n o d i s p e r s e d  s y s t e m  w i t h  
t h e  same p h y s i c a l  p a r a m e t e r s  o f  t h e  two p h a s e s ,  t h e  same volume f r a c t i o n s  in  t h e  m i x t u r e ,  and 
with the effective bubble radius as,s; 2) when 6 h ~ 1 and in the effective viscosity method 
such a direct analogy does not exist since heat transfer is determined by a smaller effective 
bubble radius than the inertial effects (aa,2~<a~/2,~ab,3, this can be shown with the help of 
Hblder's inequality [9]). Nevertheless wave propagation in a polydispersed mixture can be 
described in terms of the model of a monodispersed medium using corrections for polydisper- 
sion in the coefficients. The bubble radius in the model of a monodispersed medium is then a 
function of the density [A, see (4.4)]. 

5. Perturbation of Riemann Waves. We consider (2.5) and (4.4) in the case of plane 
one-dimensional waves 

When 6 = 0 a solution exists in the form of the simple wave (2.6), which can be repre- 
sented as ~ = ~(x - c(r)t] (~ is the any of the required functions). We assume that the 
correction ~6 in the equation of state perturbs the solution by a quantity ~6 [u = U(r) + 
6u1(x, t), where u1(x , t) ~ i]. Then one expects that the perturbation leads to a "slow" 
(time scale 6t) time dependence of the Riemann solution in a co-moving coordinate system 

= ~(x - c(r)t, 6t), i.e., u I satisfies the equation 8tu I + c(r)SxU l = 0(6). Substituting 
the above expression for u into the first equation of (5.1) and adding the result to the 
second equation dividing by c(r), we have from (2.6) and (5.1) 

0iF + C (r) 0xF - -  ~ ~ [C (r)] -1  ax~  ( t ,  F, Otr ~ 0~F) = 0. ( 5 . 2 )  

The time derivatives appearing in the equation for ~ can be replaced by derivatives 
with respect to the spatial variable x: 
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r 2 Otr = --  c (r) O~r + 0 (5), O~r = c 2 (r) O~r + 2c (r) c (r) (O~r) + 0 (5). 

The r e s i d u a l  t e r m  h e r e  i s  n o t  s i g n i f i c a n t ,  s i n c e  ( 5 . 2 )  was o b t a i n e d  in  t h e  l i n e a r  a p p r o x i m a -  
t i o n  in  6. In  a d d i t i o n ,  in  ( 5 . 2 )  we can s u b s t i t u t e  a Riemann wave u = U ( r ) ,  p = ~ ( r )  and 
f i n d  wave e q u a t i o n s  f o r  u and p.  For  example ,  u s i n g  ( 4 . 4 ) ,  we h av e  f o r  p 

Otp + x~/~p(~+l)m~)o~ IP + y (6~ pO~p + ~ (O=pp - -  
k 

2 -xl,5;p-(~-l)l(~)Oxp__ ~ 5~pF(i_al(,~),t)~=O.v j ( 5 . 3 )  

In general (5.3) is an integrodifferential equation (because of F) but it becomes a 
differential equation if we assume the effective viscosity approximation (6~ = 0) or if we 

�9 . * * * 
assume that the behavior of the bubbles is nearly isothermal(x=1, Sr=6~,5~=5~). In the 
latter case 

i p-~/a[pO~ p ~ - -  _f65 ~ = 

T h i s  e q u a t i o n  t a k e s  on a p a r t i c u l a r l y  s i m p l e  fo rm when (5~)2<<5~, 5" ~<<Su ( t h i s  o c c u r s  in  
t h e  c a s e  o f  s m a l l  b u b b l e s  in  a v e r y  v i s c o u s  l i q u i d ) :  

2 o 02 Otp + p O ~ p - - g  %p ~p = 0. ( 5 . 5 )  

6. e6 Approximation. We assume that the relative amplitude of the pressure perturba- 
tion is small (IP - ii ~ ~ ~ i) and 6 ~ en, n > 0. Neglecting terms ~e6 (~e n+1) in com- 
parison with unity [linearizing the dissipative-dispersion terms in equations like (5.2)], we 
can write (5.3) in the form 

Otp+ zl/~p~Oxp----fx "TOxP t - - 3 - ~ ( p - - l ) , t  - - ~ % o x p  + ~  (5~ )~0~p=0  

(~(• = (• q- t)/(2• ( 6 . 1 )  

When • = 1, 5~<<1 we o b t a i n  f rom ( 5 . 4 )  and ( 6 . 1 )  t h e  BKdV e q u a t i o n s  

2 , 2 ~ * 2 a Otp + pO,p--gSu~O~p + g (6~) O~p = O, 
( 6 . 2 )  

-- * * = --1 a 2  O ~  

which can also be obtained using the effective viscosity method (6~ = 0, v = v~ff), where 
v~ff differs from the effective viscosity introduced in (4.3). 

When x = y2,5~>>I one can use the linear solution (3.8) for F in (6.1). Replacing the 
differentiation with respect to x by differentiation with respect to t and assuming that the 
process evolves in time from -~, (6.1) takes the form 

t 3(y2--t) S Op d~ 2 5~O~p + t _1/~[6 .~20 s = a t p +  y~/~p"Oxp+ ~ w  k ~) ~p O, ~=~(y~) .  ( 6 . 3 )  

Assuming 6 ~ e (n = 1) t h e  n o n l i n e a r i t y  can  be t a k e n  i n t o  a c c o u n t  in  t h e  q u a d r a t i c  
approximation, as is done in the usual method of deriving the slightly nonlinear long-wave- 
length equations [ii]. Then (6.3) is similar in form to the integrodifferential equation 
of [2]; however, in [2] the kernel of the integral was an exponential, which corresponds 
to the case ~I ~ i. In the effective viscosity method one puts ~2 = x ,  6~ = ~, and 8~ = 6~ 
[see (4.3)] into (6.3); then in the quadratic approximation (6.3) reduces to the BKdV equa- 
tions [i, 2]. 

7. Discussion. The procedure for obtaining asymptotic solutions in the limit 6 § 0 in 
Sets. 4-6 assumes that the derivatives are finite [ O~a = 0(~), O~p = O(~)], which is true for 
all x and t when the wave spectrum does not contain high-frequency harmonics (for example, 
in systems with strong dissipation for rarefaction waves, weak long waves, long waves in the 
initial stages of evolution, and so on). However one would not expect this assumption to be 
valid for compression waves with amplitudes e ~ i, since the scale of the wave structure is 
also determined by dispersion and dissipative effects, which are supposed to be small accor- 
ing to the expansions used here (actually the wave structrures correspond to regions where 
the asymptotic expansions are nonuniform). Nevertheless the effective bubble sizes found 
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above can be used to estimate the dimensions of these regions for compression waves of 
moderate amplitude in a polydispersed mixture using the known results for a monodispersed 
mixture [I]. 

The equations of the s6 approximation are of interest, since they are intermediate 
between the equations of the quadratic approximation in E and the equations for simple waves. 
The E6 approximation fully takes into account the hydrodynamic nonlinearity and the non- 
linearity of the equilibrium equation of state, therefore it can be used even for large- 
amplitude waves, when the equilibrium approximation (6 = 0) is justified. On the other 
hand, the equations of the ~6 approximation are no less rigorous than the equations of the 
s 2 approximation and can be used to describe slightly nonlinear waves with dispersion and 
dissipation. We note that the equation for c [see (2.7)] is the same in the c 2 and s~ ap- 
proximations [for example, (6.2)]. 
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